47 research outputs found

    Assessment of the distribution of aeration, perfusion, and inflammation using PET/CT in an animal model of acute lung injury

    Get PDF
    Hintergrund Durch die Entwicklung neuer in vivo Bildgebungsmethoden, z.B. der Computertomographie (CT) und der Positronen-Emissions-Tomographie (PET), konnte in den letzten Jahren das Verständnis über die Pathophysiologie des akuten Lungenversagens (acute respiratory distress syndrome, ARDS) maßgeblich verbessert werden. So zeigten PET/CT-Messungen, dass beim ARDS pathophysiologische Veränderungen von Lungenbelüftung und -durchblutung zu einer Störung des Gasaustausches beitragen. Die deshalb erforderliche mechanische Beatmung kann allerdings zu einer weiteren Schädigung der Lunge führen (ventilator induced lung injury, VILI). Bisher konnten weder die exakten pathophysiologischen Mechanismen des ARDS noch der potentiell schädigende Einfluss der mechanischen Beatmung vollständig geklärt werden. Fragestellung In dieser Doktorarbeit wurden PET/CT-Bildgebungstechniken für die Quantifizierung der pulmonalen Belüftung, neutrophilischen Inflammation und Perfusion im experimentellen Modell des ARDS verwendet. Hierfür wurden zwei Substudien durchgeführt. Ziel der ersten Substudie war es, in einem tierexperimentellen Modell des ARDS den relativen Einfluss der beiden wesentlichen Mechanismen von VILI, das zyklische Öffnen und Schließen von Alveolen (Atelektrauma) und die alveoläre Überdehnung (Volutrauma), auf die pro-inflammatorische Antwort der Lunge zu untersuchen. Die zweite Substudie hatte das Ziel, die Anwendung von Fluoreszenz-markierten Mikrosphären für Messungen der pulmonalen Perfusionsverteilung in akut geschädigten Lungen zu validieren. Es sollte geprüft werden, ob ex vivo Messungen mittels Fluoreszenz-markierten Mikrosphären alternativ zu in vivo PET/CT-Messungen mittels Gallium-68 (68Ga)-markierten Mikrosphären im experimentellen Modell das ARDS herangezogen werden können. Material und Methoden Es wurden zwei Substudien in analgosedierten, intubierten und mechanisch beatmeten Schweinen durchgeführt. Die Induktion des ARDS erfolgte durch repetitives, bronchoalveoläres Lavagieren mit isotonischer Kochsalzlösung. In der ersten Substudie erfolgten Untersuchungen an 10 Tieren. Nach Rekrutierung beider Lungen wurde eine absteigende Titration des positiven, end-exspiratorischen Drucks (positive end-expiratory pressure, PEEP) durchgeführt. Es folgte eine randomisierte Zuordnung der Versuchstiere zu einer vierstündigen Beatmungstherapie der linken, VILI Lunge zur Induktion eines Atelektraumas oder Volutraumas. In beiden Versuchsgruppen wurde ein vergleichbares Tidalvolumen von 3 ml/kg Körpergewicht appliziert. Zur Induktion von Volutrauma wurde ein hoher PEEP gewählt (2 cmH2O oberhalb des Levels, an dem sich die dynamische Compliance während der PEEP-Titration um mehr als 5 % erhöht). Zur Induktion von Atelektrauma wurde ein niedriger PEEP appliziert (PEEP, bei dem eine mit Volutrauma vergleichbare Atemwegsdruckdifferenz (Differenz aus Spitzendruck und PEEP) auftritt). In der rechten Lunge, welche als Kontrolllunge diente, wurde ein kontinuierlicher, positiver Atemwegsdruck von 20 cmH2O aufrechterhalten. Der Gasaustausch, insbesondere die Eliminierung von Kohlenstoffdioxid, wurde extrakorporal unterstützt. Nach vierstündiger Beatmung der linken, VILI Lunge erfolgte die Bildgebung. Für die Quantifizierung von Ausmaß und regionaler Verteilung der pulmonalen Inflammation wurde 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) intravenös injiziert und die Aktivität mittels dynamischen PET/CT-Aufnahmen erfasst. Die Erfassung der Lungenperfusion erfolgte mittels intravenös injizierten, 68Ga-markierten Mikrosphären und statischen PET/CT-Aufnahmen. Anschließende CT-Aufnahmen während Atemmanövern am Ende der Inspiration, Exspiration und am mittleren Atemvolumen dienten der Bestimmung von Lungenbelüftung, zyklischer Überdehnung und Rekrutierung. In der zweiten Substudie wurde in 7 Schweinen die Perfusion der linken und rechten Lunge untersucht (n = 14 Lungen). Nach jeweils einstündiger mechanischer Beatmung mittels zweiphasigem, positivem Beatmungsdruck überlagert mit einem Anteil an Spontanatmung am Minutenvolumen von 0 % oder > 60 % wurden Fluoreszenzmarkierte und 68Ga-markierte Mikrosphären intravenös injiziert. Unmittelbar im Anschluss erfolgten PET/CT-Messungen der Verteilung der 68Ga-markierten Mikrosphären. Für die Analyse der Verteilung der Fluoreszenz-markierten Mikrosphären wurden die Lungen am Versuchsende entnommen, getrocknet, in Würfel gesägt und die emittierende Fluoreszenz sowie das Gewicht jedes Würfels gemessen. Die in vivo PET-Aktivitätsmessungen wurden auf die mittels CT bestimmte Lungenmasse normalisiert (QRM). Die QRM-Daten wurden auf die Auflösung der Fluoreszenzmessungen herunterskaliert (QRM,downscaled). Die Analyse der ex vivo Fluoreszenzmessungen erfolgte durch Normalisierung auf die Masse der Lungenwürfel (QFM,Mass), auf deren Volumen (QFM,Volume) und auf Würfelmasse und -volumen (QFM,Mass,Volume). Die Auflösung und die äußeren Konturen der Lungen wurden zwischen ex vivo und in vivo Messungen verglichen. Lineare Regressionen von Perfusion und axialer Verteilung jedes Lungenvolumenelementes dienten der Bestimmung von Perfusionsgradienten entlang der ventro-dorsalen und kranio-kaudalen Achse. Die Anstiege der Regressionsgeraden wurden zwischen den Messmethoden verglichen. Für jede Lunge wurde die globale und regionale Perfusionsheterogenität bestimmt und zwischen den Messmethoden verglichen. Ergebnisse In der ersten Substudie verdeutlichten PET/CT-Messungen, dass, trotz vergleichbarer Perfusion, Volutrauma im Vergleich zu Atelektrauma zu einer höheren spezifischen Aufnahme von 18F-FDG in den beatmeten, VILI Lungen führte. Dieser Effekt trat hauptsächlich in zentralen Lungenregionen auf. Weiterhin führte Volutrauma, aber nicht Atelektrauma, zu einer höheren spezifischen 18F-FDG-Aufnahme in den beatmeten, VILI Lungen im Vergleich zu den nicht-ventilierten Kontrolllungen. CT-Aufnahmen verdeutlichten, dass Atelektrauma einen höheren Anteil an nicht belüfteten Lungenkompartimenten und mehr zyklische Rekrutierung zur Folge hatte. Volutrauma bedingte hingegen höhere Anteile an überblähten und normal belüfteten Lungenarealen und mehr zyklische Überdehnung. Die Atemwegsdruckdifferenzen waren anfänglich zwischen den Gruppen vergleichbar, stiegen im Verlauf bei Atelektrauma, aber nicht bei Volutrauma, an. In der zweiten Substudie verdeutlichten sowohl ex vivo QFM,Volume-Messungen, als auch in vivo QRM-Messungen die Existenz von Perfusionsgradienten entlang der ventrodorsalen und kranio-kaudalen Achsen, trotzdem QFM-Messungen eine 21-fach geringere Auflösung aufwiesen und die erforderliche Lungenentnahme und -trocknung eine Lungendeformation bedingte. Beide Messverfahren zeigten stärkere Perfusionen dorsaler und kaudaler im Vergleich zu ventraler und kranialer Lungenareale. Im Vergleich zu QRM,downscaled-Messungen wiesen QRM-Messungen höhere globale Perfusionsheterogenitäten auf. Verglichen mit QRM,downscaled-Messungen wiesen sowohl QFM,Volume-Messungen, als auch QFM,Mass,Volume-Messungen vergleichbare regionale Perfusionsheterogenitäten auf. Schlussfolgerungen In der ersten Substudie führte Volutrauma im Vergleich zu Atelektrauma, trotz vergleichbarem Tidalvolumen, geringerer Atemwegsdruckdifferenz und vergleichbarer Perfusion, zu einer höheren pulmonalen Inflammation. Dies deutet darauf hin, dass in diesem Modell des ARDS die mit Volutrauma assoziierten hohen statischen Drücke im Vergleich zu dynamischen Einflüssen die schädlicheren Mechanismen von VILI sind. Die zweite Substudie verdeutlichte, dass ex vivo Messungen der Verteilung von Fluoreszenz-markierten Mikrosphären bei Volumennormalisierung, trotz geringerer Auflösung und auftretenden Lungendeformationen, vergleichbare Messergebnisse hinsichtlich der Existenz und des Ausmaßes von Lungengradienten mit in vivo PET/CTMessungen aufzeigen. Eine Anpassung der Auflösung der in vivo Perfusionsmessungen an die der ex vivo Messungen verringerte sowohl die globale, als auch die regionale Perfusionsheterogenität. Bei gleicher Auflösung zeigten ex vivo QFM,Volume-Messungen vergleichbare globale und regionale Perfusionsheterogenitäten wie in vivo Messungen. Die Studienergebnisse deuten darauf hin, dass für die Quantifizierung von pulmonalen Perfusionsgradienten ex vivo QFM,Volume-Messungen alternativ zu in vivo PET/CTMessungen durchgeführt werden können

    Evaluating The Efficacy Of Prone Position And Therapeutic Treatments In Ards Lungs Using Computed Tomography

    Get PDF
    Acute respiratory distress syndrome (ARDS) is a condition of rapid onset hypoxemia, pulmonary edema and collapse resulting from inflammatory lung injury, often requiring mechanical ventilation to avoid immediate death. Yet ventilator-induced lung injury (VILI) can also worsen ARDS progression. Developing and refining strategies to reduce VILI requires a thorough understanding of its mechanisms of onset and propagation. The main objective of this project is to develop computed tomography (CT)-based markers capable of predicting injury progression in ARDS, and to use these markers to test the efficacy of prone position ventilation in combination with therapeutic treatment (Imatinib) in ameliorating this progression.Early ventilation in the prone position improves blood gases and decreases mortality in ARDS, but the efficacy of prone positioning may change between early and later stages of injury. Furthermore, baseline characteristics of the primary injury may influence therapeutic response. Understanding the interaction between injury progression and prone positioning’s efficacy may help to target the patients who will benefit most from this therapy and could also help to refine both its timing and indications. Through a series of experiments porcine models of lung injury and patients with acute respiratory distress syndrome (ARDS), we found that the effects of prone positioning on lung aeration may depend on both the stage of lung injury and duration of prior ventilation—potentially limiting the clinical efficacy of this treatment if applied late. Restoring or protecting the endothelial barrier could minimize vascular damage in highly perfused tissue. Imatinib, a tyrosine kinase inhibitor used to treat chronic myelogenous leukemia, reduces injury severity in pre-clinical ARDS models as well as pulmonary leak index in clinical ARDS patients by inhibiting the Abl-related gene as well as related kinases and platelet-derived growth factor receptor (PDGFR), which are important in maintaining endothelial integrity. Our results using sequential CT scans showed that Imatinib mitigated lung injury in mechanically ventilated rats and reduced mortality while delaying functional and radiological injury progression. Imatinib also attenuated edema (lung tissue mass on CT) and capillary leak (BAL protein concentration), and treated animals displayed fewer histological and biological markers of inflammatory lung injury

    Towards an Efficient Gas Exchange Monitoring with Electrical Impedance Tomography - Optimization and validation of methods to investigate and understand pulmonary blood flow with indicator dilution

    Get PDF
    In vielen Fällen sind bei Patienten, die unter stark gestörtem Gasaustausch der Lunge leiden, die regionale Lungenventilation und die Perfusion nicht aufeinander abgestimmt. Besonders bei Patienten mit akutem Lungenversagen sind sehr heterogene räumliche Verteilungen von Belüftung und Perfusion der Lunge zu beobachten. Diese Patienten müssen auf der Intensivstation künstlich beatmet und überwacht werden, um einen ausreichenden Gasaustausch sicherzustellen. Bei schweren Lungenverletzungen ist es schwierig, durch die Anwendung hoher Beatmungsdrücke und -volumina eine optimale Balance zwischen dem Rekrutieren kollabierter Regionen zu finden, und gleichzeitig die Lunge vor weiterem Schaden durch die von außen angelegten Drücke zu schützen. Das Interesse für eine bettseitige Messung und Darstellung der regionalen Belüftungs- und Perfusionsverteilung für den Einsatz auf der Intensivstation ist in den letzten Jahren stark gestiegen, um eine lungenprotektive Beatmung zu ermöglichen und klinische Diagnosen zu vereinfachen. Die Elektrische-Impedanztomographie (EIT) ist ein nicht-invasives, strahlungsfreies und sehr mobil einsetzbares System. Es bietet eine hohe zeitliche Abtastung und eine funktionelle räumliche Auflösung, die es ermöglicht, dynamische (patho-) physiologische Prozesse zu visualisieren und zu überwachen. Die medizinische Forschung an EIT hat sich dabei hauptsächlich auf die Schätzung der räumlichen Belüftung konzentriert. Kommerziell erhältliche Systeme haben gezeigt, dass die EIT eine wertvolle Entscheidungshilfe während der mechanischen Beatmung darstellt. Allerdings ist die Abschätzung der pulmonalen Perfusion mit EIT noch nicht etabliert. Dies könnte das fehlende Glied sein, um die Analyse des pulmonalen Gasaustauschs am Krankenbett zu ermöglichen. Obwohl einige Publikationen die prinzipielle Machbarkeit der indikatorgestützten EIT zur Schätzung der räumlichen Verteilung des pulmonalen Blutflusses gezeigt haben, müssen diese Methoden optimiert und durch Vergleich mit dem Goldstandard des Lungenperfusions-Monitorings validiert werden. Darüber hinaus ist weitere Forschung notwendig, um zu verstehen welche physiologischen Informationen der EIT-Perfusionsschätzung zugrunde liegen. Mit der vorliegenden Arbeit soll die Frage beantwortet werden, ob bei der klinischen Anwendung von EIT neben der regionalen Belüftung auch räumliche Informationen des pulmonalen Blutflusses geschätzt werden können, um damit potenziell den pulmonalen Gasaustausch am Krankenbett beurteilen zu können. Die räumliche Verteilung der Perfusion wurde durch Bolusinjektion einer leitfähigen Kochsalzlösung als Indikator geschätzt, um die Verteilung des Indikators während seines Durchgangs durch das Gefäßsystem der Lunge zu verfolgen. Verschiedene dynamische EIT-Rekonstruktionsmethoden und Perfusionsparameter Schätzmethoden wurden entwickelt und verglichen, um den pulmonalen Blutfluss robust beurteilen zu können. Die geschätzten regionalen EIT-Perfusionsverteilungen wurden gegen Goldstandard Messverfahren der Lungenperfusion validiert. Eine erste Validierung wurde anhand von Daten einer tierexperimentellen Studie durchgeführt, bei der die Multidetektor-Computertomographie als vergleichende Lungenperfusionsmessung verwendet wurde. Darüber hinaus wurde im Rahmen dieser Arbeit eine umfassende präklinische Tierstudie durchgeführt, um die Lungenperfusion mit indikatorverstärkter EIT und Positronen-Emissions-Tomographie während mehrerer verschiedener experimenteller Zustände zu untersuchen. Neben einem gründlichen Methodenvergleich sollte die klinische Anwendbarkeit der indikatorgestützten EIT-Perfusionsmessung untersucht werden, indem wir vor allem die minimale Indikatorkonzentration analysierten, die eine robuste Perfusionsschätzung erlaubte und den geringsten Einfluss für den Patienten darstellt. Neben den experimentellen Validierungsstudien wurden zwei in-silico-Untersuchungen durchgeführt, um erstens die Sensitivität von EIT gegenüber des Durchgangs eines leitfähigen Indikators durch die Lunge vor stark heterogenem pulmonalen Hintergrund zu bewerten. Zweitens untersuchten wir die physiologischen Einflüsse, die zu den rekonstruierten EITPerfusionsbildern beitragen, um die Limitationen der Methode besser zu verstehen. Die Analysen zeigten, dass die Schätzung der Lungenperfusion auf der Basis der indikatorverstärkten EIT ein großes Potenzial für die Anwendung in der klinischen Praxis aufweist, da wir sie mit zwei Goldstandard-Perfusionsmesstechniken validieren konnten. Zudem konnten wertvolle Schlüsse über die physiologischen Einflüsse auf die geschätzten EIT Perfusionsverteilungen gezogen werden

    Phantom and computational studies towards the clinical translation of gas in scattering media absorption spectroscopy into neonatal respiratory care

    Get PDF
    Everything except vacuum is heterogeneous to some extent. Even media that we consider homogeneous (such as pure gases and water) can be taken apart into individual heterogeneities (such as atoms and molecules), which can be distinguished with a sufficiently fine probe. Absorption spectroscopy was extensively used by Robert Bunsen and Gustav Kirchhoff in the 1860’s to separate, identify and measure various chemical substances. They defined a line of research, where traces of elements were just detectable with the aid of specialized instruments like the spectroscope, and since then, the absorption lines have been subject of experimental and theoretical developments. Today, we know that the nature of the absorption lines can be described by quantum mechanical changes induced in the atoms or molecules, and with the advances in light sources and sensing technologies, absorption spectroscopy has become a tremendously useful tool with a wide range of applications. The studies presented in this thesis are related to gas absorption spectroscopy, in particular, a technique called GASMAS, which stands for “GAs in Scattering Media Absorption Spectroscopy”. This spectroscopy technique was introduced in Lund University in 2001 by S. Svanberg’s group, to study the spectral features of gases inside porous or hollowed scattering media, combining laser spectroscopy with sensitive modulation techniques. Unlike solids and liquids, which have a smooth absorption and scattering wavelength dependence (1 − 10 nm), gases exhibit sharp absorptive features (10−4 nm). This difference between the absorption spectra of solid state matter and gases, is the corner stone of this technique. In a typical GASMAS measurement, the laser wavelength is scanned across at least one of the absorption lines of the gas of interest. The small gas absorption signal (embedded in the scattered spectrum from the bulk material) is then filtered from the detected signal, making it possible to retrieve the gas concentrations and study their diffusion dynamics using the principles of the Beer-Lambert law. Although there is evidence of the potential of GASMAS to sense oxygen and water vapor in human cavities, such as the ear, nasal sinuses, lungs, intestines and hip bone, one the most promising clinical applications could be the lung function assessment in neonates. The focus of this thesis is to investigate the potential of translating GASMAS into such an application, combining a computational and experimental approach. Most of the work was done in a collaboration between Biophotonics@Tyndall, the Infant Centre (hosted at the Cork University Maternity Hospital-UCC) and the Swedish industry partner, GPX Medical who have built a pioneering GASMAS instrument, suitable for clinical use. The motivation behind this collaborative work, is to assist clinicians in the monitoring of lung function in premature newborns, as their lungs lack structural and biochemical maturation, which can result in respiratory failure. Currently, the use of GASMAS is limited to observational studies with healthy babies. Thus, the improvement and optimization of the technology depends on feasibility tests with tissue-like models. Phantoms mimicking the geometry and optical properties of the main thoracic organs, were created to study the influence of source detector positioning and chest physiognomy in the GASMAS signals. A functional phantom resembling the anatomy, temperature and humidity of the respiratory zone, was also developed to investigate the potential of GASMAS technique in measuring changes in inflated volume. The optimization of source-detector configurations over the thorax is one of the challenges in the clinical translation of GASMAS. It is crucial to define the optimal probe positioning, to obtain the highest possible signal reaching the detector, which also carries information of the gas absorption in lung tissue. Computational studies are then used to simulate the light transport in accurate anthropomorphic models, which contributes with the understanding of near infra-red interaction with the thorax, and most of all, to find the probe locations for which the detection of gas absorption is feasible, and enhance the data acquisition in future clinical studies. This document includes the theoretical background of GASMAS, the basics of respiratory physiology, and the current methods for clinical monitoring and diagnostics of lung pathologies in neonates. The following two chapters, show how the developed phantom and computational models enable the recreation of different clinical scenarios, suitable for GASMAS studies. The main contribute is the identification of the minimum requirements necessary to further improve and advance towards a GASMAS bedside clinical device, that can potentially be used, for lung function assessment and monitoring in neonatal respiratory health

    Case series of breast fillers and how things may go wrong: radiology point of view

    Get PDF
    INTRODUCTION: Breast augmentation is a procedure opted by women to overcome sagging breast due to breastfeeding or aging as well as small breast size. Recent years have shown the emergence of a variety of injectable materials on market as breast fillers. These injectable breast fillers have swiftly gained popularity among women, considering the minimal invasiveness of the procedure, nullifying the need for terrifying surgery. Little do they know that the procedure may pose detrimental complications, while visualization of breast parenchyma infiltrated by these fillers is also deemed substandard; posing diagnostic challenges. We present a case series of three patients with prior history of hyaluronic acid and collagen breast injections. REPORT: The first patient is a 37-year-old lady who presented to casualty with worsening shortness of breath, non-productive cough, central chest pain; associated with fever and chills for 2-weeks duration. The second patient is a 34-year-old lady who complained of cough, fever and haemoptysis; associated with shortness of breath for 1-week duration. CT in these cases revealed non thrombotic wedge-shaped peripheral air-space densities. The third patient is a 37‐year‐old female with right breast pain, swelling and redness for 2- weeks duration. Previous collagen breast injection performed 1 year ago had impeded sonographic visualization of the breast parenchyma. MRI breasts showed multiple non- enhancing round and oval shaped lesions exhibiting fat intensity. CONCLUSION: Radiologists should be familiar with the potential risks and hazards as well as limitations of imaging posed by breast fillers such that MRI is required as problem-solving tool

    Characterization of alar ligament on 3.0T MRI: a cross-sectional study in IIUM Medical Centre, Kuantan

    Get PDF
    INTRODUCTION: The main purpose of the study is to compare the normal anatomy of alar ligament on MRI between male and female. The specific objectives are to assess the prevalence of alar ligament visualized on MRI, to describe its characteristics in term of its course, shape and signal homogeneity and to find differences in alar ligament signal intensity between male and female. This study also aims to determine the association between the heights of respondents with alar ligament signal intensity and dimensions. MATERIALS & METHODS: 50 healthy volunteers were studied on 3.0T MR scanner Siemens Magnetom Spectra using 2-mm proton density, T2 and fat-suppression sequences. Alar ligament is depicted in 3 planes and the visualization and variability of the ligament courses, shapes and signal intensity characteristics were determined. The alar ligament dimensions were also measured. RESULTS: Alar ligament was best depicted in coronal plane, followed by sagittal and axial planes. The orientations were laterally ascending in most of the subjects (60%), predominantly oval in shaped (54%) and 67% showed inhomogenous signal. No significant difference of alar ligament signal intensity between male and female respondents. No significant association was found between the heights of the respondents with alar ligament signal intensity and dimensions. CONCLUSION: Employing a 3.0T MR scanner, the alar ligament is best portrayed on coronal plane, followed by sagittal and axial planes. However, tremendous variability of alar ligament as depicted in our data shows that caution needs to be exercised when evaluating alar ligament, especially during circumstances of injury

    A multi-technique hierarchical X-ray phase-based approach for the characterization and quantification of the effects of novel radiotherapies

    Get PDF
    Cancer is the first or second leading cause of premature deaths worldwide with an overall rapidly growing burden. Standard cancer therapies include surgery, chemotherapy and radiotherapy (RT) and often a combination of the three is applied to improve the probability of tumour control. Standard therapy protocols have been established for many types of cancers and new approaches are under study especially for treating radio-resistant tumours associated to an overall poor prognosis, as for brain and lung cancers. Follow up techniques able to monitor and investigate the effects of therapies are important for surveying the efficacy of conventionally applied treatments and are key for accessing the curing capabilities and the onset of acute and late adverse effects of new therapies. In this framework, this doctoral Thesis proposes the X-ray Phase Contrast Im-aging - Computed Tomography (XPCI-CT) technique as an imaging-based tool to study and quantify the effects of novel RTs, namely Microbeam and Minibeam Radiation therapy (MRT and MB), and to compare them to the standard Broad Beam (BB) induced effects on brain and lungs. MRT and MB are novel radiotherapies that deliver an array of spatially fractionated X-ray beamlets issued from a synchrotron radiation source, with widths of tens or hundreds of micrometres, respectively. MRT and MB exploit the so-called dose-volume effect: hundreds of Grays are well tolerated by healthy tissues and show a preferential effect on tumour cells and vasculature when delivered in a micrometric sized micro-plane, while induce lethal effects if applied over larger uniform irradiation fields. Such highly collimated X-ray beams need a high-resolution and a full-organ approach that can visualize, with high sensitivity, the effects of the treatment along and outside the beamlets path. XPCI-CT is here suggested and proven as a powerful imaging technique able to determine and quantify the effects of the radiation on normal and tumour-bearing tissues. Moreover, it is shown as an effective technique to complement, with 3D information, the histology findings in the follow-up of the RT treatments. Using a multi-scale and multi-technique X-ray-based approach, I have visualized and analysed the effects of RT delivery on healthy and glioblastoma multiforme (GBM)-bearing rat brains as well as on healthy rat lungs. Ex-vivo XPCI-CT datasets acquired with isotropic voxel sizes in the range 3.253 – 0.653 μm3 could distinguish, with high sensitivity, the idiopathic effects of MRT, MB and BB therapies. Histology, immunohistochemistry, Small- and Wide-Angle X-ray Scattering and X-ray Fluorescence experiments were also carried out to accurately interpret and complement the XPCI-CT findings as well as to obtain a detailed structural and chemical characterization of the detected pathological features. Overall, this multi-technique approach could detect: i) a different radio-sensitivity for the MRT-treated brain areas; ii) Ca and Fe deposits, hydroxyapatite crystals formation; iii) extended and isolated fibrotic contents. Full-organ XPCI-CT datasets allowed for the quantification of tumour and mi-crocalcifications’ volumes in treated brains and the amount of scarring tissue in irradiated lungs. Herein, the role of XPCI-CT as a 3D virtual histology technique for the follow-up of ex-vivo RT effects has been assessed as a complementary method for an accurate volumetric investigation of normal and pathological states in brains and lungs, in a small animal model. Moreover, the technique is proposed as a guidance and auxiliary tool for conventional histology, which is the gold standard for pathological evaluations, owing to its 3D capabilities and the possibility of virtually navigating within samples. This puts a landmark for XPCI-CT inclusion in the pre-clinical studies pipeline and for advancing towards in-vivo XPCI-CT imaging of treated organs.Weltweit gilt Krebs als häufigste bzw. zweithäufigste Ursache eines zu früh erfolgenden Todes, wobei die Zahlen rasch ansteigen. Standardmäßige Krebstherapien umfassen chirurgische Eingriffe, Chemotherapie und Strahlentherapie (radiotherapy, RT); oft kommt eine Kombination daraus zur Anwendung, um die Wahrscheinlichkeit der Tumorkontrolle zu erhöhen. Es wurden Standardtherapieprotokolle für zahlreiche Krebsarten eingerichtet und es wird vor allem in der Behandlung von strahlenresistenten Tumoren mit allgemein schlechter Prognose wie bei Hirn- und Lungentumoren an neuen Ansätzen geforscht. Nachverfolgungstechniken, welche die Auswirkungen von Therapien überwachen und ermitteln, sind zur Überwachung der Wirksamkeit herkömmlich angewandter Behandlungen wichtig und auch maßgeblich am Zugang zu den Fähigkeiten zur Heilung sowie zum Auftreten akuter und verzögerter Nebenwirkungen neuer Therapien beteiligt. In diesem Rahmenwerk unterbreitet diese Doktorarbeit die Technik der Röntgen-Phasenkontrast-Bildgebung über Computertomographie (X-ray Phase Contrast Imaging - Computed Tomography, XPCI‑CT) als bildverarbeitungs-basiertes Tool zur Untersuchung und Quantifizierung der Auswirkungen neuartiger Strahlentherapien, nämlich der Mikrobeam- und Minibeam-Strahlentherapie (MRT und MB), sowie zum Vergleich derselben mit den herkömmlichen durch Breitstrahlen (Broad Beam, BB) erzielten Auswirkungen auf Gehirn und Lunge. MRT und MB sind neuartige Strahlentherapien, die ein Array räumlich aufgeteilter Röntgenstrahlenbeamlets aus einer synchrotronen Strahlenquelle mit einer Breite von Zehnteln bzw. Hundersteln Mikrometern abgeben. MRT und MB nutzen den sogenannten Dosis-Volumen-Effekt: Hunderte Gray werden von gesundem Gewebe gut vertragen und wirken bei der Abgabe in einer Mikroebene im Mikrometerbereich vorrangig auf Tumorzellen und Blutgefäße, während sie bei einer Anwendung über größere gleichförmige Strahlungsfelder letale Auswirkungen aufweisen. Solche hoch kollimierten Röntgenstrahlen erfordern eine hohe Auflösung und einen Zugang zum gesamten Organ, bei dem die Auswirkungen der Behandlung entlang und außerhalb der Beamletpfade mit hoher Empfindlichkeit visualisiert werden können. Hier empfiehlt und bewährt sich die XPCI‑CT als leistungsstarke Bildverarbeitungstechnik, welche die Auswirkungen der Strahlung auf normale und tumortragende Gewebe feststellen und quantifizieren kann. Außerdem hat sich gezeigt, dass sie durch 3‑D-Informationen eine effektive Technik zur Ergänzung der histologischen Erkenntnisse in der Nachverfolgung der Strahlenbehandlung ist. Anhand eines mehrstufigen und multitechnischen röntgenbasierten Ansatzes habe ich die Auswirkungen der Strahlentherapie auf gesunde und von Glioblastomen (GBM) befallene Rattenhirne sowie auf gesunde Rattenlungen visualisiert und analysiert. Mit isotropen Voxelgrößen im Bereich von 3,53 bis 0,653 μm3 erfasste Ex-vivo-XPCI-CT-Datensätze konnten die idiopathischen Auswirkungen der MRT-, MB- und BB‑Behandlung mit hoher Empfindlichkeit unterscheiden. Es wurden auch Experimente zu Histologie, Immunhistochemie, Röntgenklein- und ‑weitwinkelstreuung und Röntgenfluoreszenz durchgeführt, um die XPCI‑CT-Erkenntnisse präzise zu interpretieren und zu ergänzen sowie eine detaillierte strukturelle und chemische Charakterisierung der nachgewiesenen pathologischen Merkmale zu erhalten. Im Allgemeinen wurde durch diesen multitechnischen Ansatz Folgendes ermittelt: i) eine un-terschiedliche Strahlenempfindlichkeit der mit MRT behandelten Gehirnbereiche; ii) Ca- und Fe-Ablagerungen und die Bildung von Hydroxylapatitkristallen; iii) ein ausgedehnter und isolierter Fibrosegehalt. XPCI‑CT-Datensätze des gesamten Organs ermöglichten die Quantifizierung der Volume von Tumoren und Mikroverkalkungen in den behandelten Gehirnen und der Menge des Narbengewebes in bestrahlten Lungen. Dabei wurde die Rolle der XPCI‑CT als virtuelle 3‑D-Histologietechnik für die Nachverfolgung von Ex-vivo-RT‑Auswirkungen als ergänzende Methode für eine präzise volumetrische Untersuchung des normalen und pathologischen Zustands von Gehirnen und Lungen im Kleintiermodell untersucht. Darüber hinaus wird die Technik aufgrund ihrer 3‑D-Fähigkeiten und der Möglichkeit zur virtuellen Navigation in den Proben als Leitfaden und Hilfstool für die herkömmliche Histologie vorgeschlagen, die der Goldstandard für die pathologische Evaluierung ist. Dies markiert einen Meilenstein für die Übernahme der XPCI‑CT in die Pipeline präklinischer Studien und für den Übergang zur In-vivo-XPCI‑CT von behandelten Organen

    DICOM for EIT

    Get PDF
    With EIT starting to be used in routine clinical practice [1], it important that the clinically relevant information is portable between hospital data management systems. DICOM formats are widely used clinically and cover many imaging modalities, though not specifically EIT. We describe how existing DICOM specifications, can be repurposed as an interim solution, and basis from which a consensus EIT DICOM ‘Supplement’ (an extension to the standard) can be writte
    corecore